Netflix is one of the world's leading entertainment services, with over 300 million paid memberships in over 190 countries enjoying TV series, films and games across a wide variety of genres and languages. Members can play, pause and resume watching as much as they want, anytime, anywhere, and can change their plans at any time.
Machine Learning Research at Netflix improves various aspects of our business, including personalization algorithms, member and title understanding, creative tooling, system optimization, and innovative tooling. Our research spans many areas of machine learning, including recommender systems, reinforcement learning, computer vision, natural language processing, optimization, causality, and operations research. Great applied research also requires robust machine learning infrastructure, another strong emphasis at Netflix.
Candidates will be evaluated to find the best fit in one of our organizations, including Content, Choosing & Conversation, Commerce or AI for Member Systems. You can find a detailed list of teams across these organizations to learn more. Applicants are encouraged to express their interest in one or multiple types of teams/ domain areas listed if your skills and qualifications are aligned.
We are looking for individuals with the following qualifications:
Currently enrolled student pursuing an advanced degree (PhD) in areas such as Computer Science, Machine Learning, Artificial Intelligence, Computer Engineering, Mathematics, Statistics, Data Science, Economics, Computational Biology, Chemistry, Physics, Cognitive Science or a related field
Domain expertise in one or more of the following areas:
Experience programming in at least one programming language (Python, Java, Scala, or C/C++)
Familiarity developing ML models using common frameworks (e.g., PyTorch, TensorFlow, Keras) and training on GPUs.
Familiarity with distributed training and inference paradigms and associated frameworks (eg. DDP, FSDP, HSDP, Deepspeed)
Familiarity with end-to-end machine learning pipelines (e.g. training or production deployment) and common challenges like explainability.
Curious, self-motivated, and excited about solving open-ended challenges at Netflix.
Great communication skills, both oral and written.
Nice to have:
** For your application to be considered complete**
** About the Internship Program**
At Netflix, we offer a personalized experience for interns, and our aim is to offer an experience that mimics what it is like to actually work here. We match qualified interns with projects and groups based on interests and skill sets, and fully embed interns within those groups for the summer. Netflix is a unique place to work and we live by our values, so it's worth learning more about our culture .
At Netflix, we carefully consider a wide range of compensation factors to determine the Intern top of market. We rely on market indicators to determine compensation and consider your specific job, skills, and experience to get it right. These considerations can cause your compensation to vary and will also be dependent on your location. The overall market range for Netflix Internships is typically $40/hour - $85/hour.
This market range is based on total compensation (vs. only base salary), which is in line with our compensation philosophy. Netflix is a unique culture and environment. Learn more here .
Inclusion is a Netflix value and we strive to host a meaningful interview experience for all candidates. If you want an accommodation/adjustment for a disability or any other reason during the hiring process, please send a request to your recruiting partner.
We are an equal-opportunity employer and celebrate diversity, recognizing that diversity builds stronger teams. We approach diversity and inclusion seriously and thoughtfully. We do not discriminate on the basis of race, religion, color, ancestry, national origin, caste, sex, sexual orientation, gender, gender identity or expression, age, disability, medical condition, pregnancy, genetic makeup, marital status, or military service.
Job is open for no less than 7 days and will be removed when the position is filled.